Anomalous high capacitance in a coaxial single nanowire capacitor.

نویسندگان

  • Zheng Liu
  • Yongjie Zhan
  • Gang Shi
  • Simona Moldovan
  • Mohamed Gharbi
  • Li Song
  • Lulu Ma
  • Wei Gao
  • Jiaqi Huang
  • Robert Vajtai
  • Florian Banhart
  • Pradeep Sharma
  • Jun Lou
  • Pulickel M Ajayan
چکیده

Building entire multiple-component devices on single nanowires is a promising strategy for miniaturizing electronic applications. Here we demonstrate a single nanowire capacitor with a coaxial asymmetric Cu-Cu(2)O-C structure, fabricated using a two-step chemical reaction and vapour deposition method. The capacitance measured from a single nanowire device corresponds to ~140 μF cm(-2), exceeding previous reported values for metal-insulator-metal micro-capacitors and is more than one order of magnitude higher than what is predicted by classical electrostatics. Quantum mechanical calculations indicate that this unusually high capacitance may be attributed to a negative quantum capacitance of the dielectric-metal interface, enhanced significantly at the nanoscale.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Capacitance Electrical Probe for Nanoscale Devices and Circuits

An electrical probe is constructed of a small capacitor in contact with the circuit node under test so as not to load this circuit node and cause distortion of the input signal. The small capacitor is then placed in series with the small input resistance of a terminated coaxial signal line. The voltage signal at the output of the coaxial line will be approximately the product of the small capac...

متن کامل

An Isolated Off-Line High Power Factor Electrolytic Capacitor-Less LED Driver with Pulsating Output Current

One of the most efficient lighting technology is based on light-emitting diodes (LEDs). Common LED drivers with AC-input (50-60Hz) usually require a bulk electrolytic capacitor to decrease low-frequency ripple in the output. However, the critical element that limits the lifespan of the LED driver is the electrolytic capacitor. An isolated off-line LED driver is proposed in this paper, in which ...

متن کامل

1. Lithographically Patterned Gold/Manganese Dioxide Core/Shell Nanowires for High Power Supercapacitors – Electrochemical and Raman Spectroscopic Characterization

MnO2 is the most investigated transition metal oxide electrode material for supercapaitor applications because of its intriguing features including natural abundance, low cost, and high theoretical specific capacitance (1370 F g−1). The theoretical specific capacitance has rarely been achieved in bulk MnO2 limited by the poor electrical conductivity and limited surface area. Hence there is a ra...

متن کامل

Highly flexible pseudocapacitor based on freestanding heterogeneous MnO2/conductive polymer nanowire arrays.

Flexible electronics such as wearable electronic clothing, paper-like electronic devices, and flexible biomedical diagnostic devices are expected to be commercialized in the near future. Flexible energy storage will be needed to power these devices. Supercapacitor devices based on freestanding nanowire arrays are promising high power sources for these flexible electronics. Electrodes for these ...

متن کامل

High Performance All-solid Supercapacitors Based on the Network of Ultralong Manganese dioxide/Polyaniline Coaxial Nanowires.

In recent years, thin, lightweight and flexible solid supercapacitors are of considerable interest as energy storage devices. Here we demonstrated all-solid supercapacitors (SSCs) with high electrochemical properties, low self-discharge characteristics based on manganese dioxide/polyaniline (MNW/PANI) coaxial nanowire networks. The synergistic effect of MnO2/PANI plus the unique coaxial nanostr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature communications

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012